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Abstract: Smoke from fires significantly influences climate, weather, and human health. Fire smoke
is traditionally detected using an aerosol index calculated from spectral contrast changes. However,
such methods usually miss thin smoke plumes. It also remains challenging to accurately separate
smoke plumes from dust, clouds, and bright surfaces. To improve smoke plume detections, this
paper presents a new scattering-based smoke detection algorithm (SSDA) depending mainly on
visible and infrared imaging radiometer suite (VIIRS) blue and green bands. The SSDA is established
based on the theory of Mie scattering that occurs when the diameter of an atmospheric particulate
is similar to the wavelength of the scattered light. Thus, smoke commonly causes Mie scattering
in VIIRS blue and green bands because of the close correspondence between smoke particulate
diameters and the blue/green band wavelengths. For developing the SSDA, training samples were
selected from global fire-prone regions in North America, South America, Africa, Indonesia, Siberia,
and Australia. The SSDA performance was evaluated against the VIIRS aerosol detection product
and smoke detections from the ultraviolet aerosol index using manually labeled fire smoke plumes
as a benchmark. Results show that the SSDA smoke detections are superior to existing products
due chiefly to the improved ability of the algorithm to detect thin smoke and separate fire smoke
from other surface types. Moreover, the SSDA smoke distribution pattern exhibits a high spatial
correlation with the global fire density map, suggesting that SSDA is capable of detecting smoke
plumes of fires in near real-time across the globe.

Keywords: fire smoke detection; aerosol index; aerosol scattering; spectral signature; spatial stan-
dard deviation

1. Introduction

A large amount of smoke from wildfires and prescribed fires is released into the
atmosphere every year. Smoke aerosols severely affect climate, weather, and human en-
vironments [1,2]. Specifically, smoke plumes from biomass burning are dominated by
black carbon and organic aerosols that affect climate through changes to the radiation
budget. Direct radiative effects include (1) climate warming due to strong absorption of
heat radiation emitted from the ground by black carbon [3] that also can lower snow and
ice albedo in the Arctic [4], and (2) climate cooling due to the scattering activities of organic
aerosols [3]. Further, smoke influences weather conditions by suppressing or energizing
cloud formation [5,6]. Particulate matter from smoke plumes can suppress cloud formation
and growth by narrowing the temperature gap between the ground and the atmosphere [5]
or facilitate the formation and growth of clouds by adding more particles to the atmosphere
for water vapor condensation [6]. Moreover, smoke from fires severely affects the human
living environment by degrading air quality and reducing visibility. Smoke-polluted air
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can have aerosols with relatively small particulate sizes that can be easily breathed in, often
leading to respiratory infection, asthma, lung cancer, and cardiovascular disease among
other human health impacts [7]. Smoke aerosols also influence near-ground visibility as
reported in the comparison between satellite-detected smoke and the visibilities recorded
by meteorological observers [8,9]. Thus, fire smoke detection is necessary for multiple ap-
plications including improving climate change simulations [10], weather prediction [11,12],
and human-environment monitoring [8,13]. To fully understand the local, regional, and
global effects of smoke, methods and products for accurate, near real-time smoke plume
detections are urgently needed on regional and global scales.

A few methods have been developed to detect fire smoke plumes regionally or glob-
ally during recent decades [8,14–16]. First, manually drawing smoke plumes has been a
commonly used technique for small spatial areas and coarse temporal scales. This is labor-
and time-consuming, subjective, and the accuracy of delineated smoke plumes depends on
expert knowledge [14,17–20]. It is also challenging for this method to visually distinguish
smoke from clouds, dust, and other aerosols based only on composited imagery, which is
a known issue in the analyst labeled hazard mapping system (HMS) smoke product [21].
Second, multiple frames of satellite images, acquired before and after fire events, have
been used to find smoke cores using image differences and then expanded to whole smoke
plumes by identifying neighborhood pixels with similar spatial-and-spectral characteris-
tics (Chrysoulakis et al., 2007). Although this method offers a novel way to detect smoke
plumes under specific conditions, there are some disadvantages: (1) smoke cores can hardly
be extracted when either the pre-fire or post-fire images are contaminated by smoke, clouds,
or bright surfaces; (2) expanding smoke cores recursively is very time-consuming; (3) it is
challenging to apply such algorithms to large scales; and (4) false positive/negative smoke
cores could result in much larger commission/omission errors after regional expanding.
Third, machine learning techniques for smoke detection are recently emerging, like convo-
lutional neural networks [16,22,23] and maximum likelihood [8], but depend heavily on
the quality of training samples from different cover types (e.g., smoke, cloud, dust, and
bright surface), choice of model/algorithm, and model hyper-parameter configuration.

Finally, the most well-established smoke detection method is based on the aerosol
index (AI) which has been calculated for several different satellite sensors spanning a period
of more than 30 years [24–26]. Generally, the positive AI value indicates the presence of
absorptive aerosols (i.e., plumes of dust, volcanic ashes, and smoke from fires) [27]. The
most commonly used AI is computed from two ultraviolet bands (0.34 and 0.38 µm) based
on the spectral contrast due to differences in smoke aerosol absorption, which also removes
ozone’s impact because of the very limited ozone absorption at these two bands. Although
using ultraviolet bands could minimize impacts from interfering absorbers (i.e., ozone),
AI products derived from ultraviolet bands usually have a quite coarse spatial resolution.
Recently, an aerosol detection product (ADP) has been developed for the visible infrared
imaging radiometer suite (VIIRS) based on AI calculated from the 0.412 and 0.445 µm
bands. The VIIRS AI has a spatial resolution as high as 750 m although the band pair choice
for AI calculation is not optimal [28]. However, both the ultraviolet bands-based AI and
VIIRS AI tend to miss thin smoke plumes when smoke conditions are characterized by
small aerosol optical depth, low aerosol layer height, and low single scattering albedo since
absorption AI has been shown to be less sensitive to these three smoke conditions [29]. The
AI-based method also tends to confuse smoke with bright surfaces (e.g., desert) due to
the strong wavelength-dependent albedo of bright surfaces, which could lead to a similar
spectral contrast as smoke absorption and then high AI values [30]. In addition, the AI-
based method is hardly able to distinguish smoke from high clouds with an effective cloud
fraction close to one because these clouds often present positive AI values. Therefore, the
development of novel methods for detecting fire smoke plumes is still needed.

Considering the strong Mie scattering at blue and green bands caused by smoke
aerosols due to the similarity of smoke particulate diameters to these wavelengths, in this
study, we developed a new scattering-based smoke detection algorithm (SSDA) to detect
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fire smoke plumes using daily VIIRS 750-m reflectance and brightness temperature data.
The goals of this study were: (1) to design a new smoke detection algorithm (SSDA) capable
of detecting smoke emitted by both large and small fires and separating smoke plumes
from clouds and bright surfaces; (2) to validate the SSDA using manually delineated smoke
reference data and compare its performance with existing smoke-related products; and (3)
to test the SSDA potential for global application.

2. Data
2.1. Study Area

We selected several fire-prone regions at a global scale as our study area. The fire-
prone regions are characterized by very frequent fire activities [31,32]. In this study, a
total of six fire prone regions (i.e., North America, South America, Africa, Indonesia,
Siberia, and Australia as shown in Figure 1) were chosen based on active fire detection
density that was calculated using global VIIRS 750 m daily active fire observations in
2018. Although all these regions are affected frequently by fires every year, they have
very different fuel types, fire intensities, smoke plume sizes, smoke aerosol densities,
and smoke aerosol size distributions [33,34]. Specifically, North America and Siberia are
dominated by forest fires with large smoke plumes, while Africa, South America, and
Australia are affected mostly by savanna fires or grass fires with relatively small smoke
plumes [35,36]. In general, forest fires emit smoke with coarse particulates while the fires
from grasses and/or savannas usually release smoke with fine particulates [37]. Particle
size in smoke aerosols is also impacted significantly by combustion phases with different
particulate size distributions for smoldering and flaming combustion. For example, smoke
particles are usually coarser in Indonesia than other regions due to a higher proportion of
smoldering from peatland fires [33]. Particulate sizes in smoke aerosols affect scattering
from incident radiation [34]. Hence, the smoke plume samples selected from these fire-
prone regions should represent well the typical spectral characteristics of global fire smoke.
Crop fires in Mainland Southeast Asia (such as Thailand) were not selected in the algorithm
development because most of the smoke plumes there are so thin that they are easily
affected by other cover types (i.e., mixed pixels).
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Figure 1. The fire-prone regions (gray box) for selecting smoke plume samples in (a,b) North America, (c) South America,
(d) Africa, (e) Indonesia, (f) Siberia, and (g) Australia. The base map is 1◦ × 1◦ global fire detection density derived from
2018 VIIRS 750 m active fire observations in geographic projection.

2.2. VIIRS Sensor Data Record

The VIIRS sensor data record (SDR) has 22 channels that span the visible and in-
frared wavelengths ranging from 0.41 µm to 12.01 µm. Among these channels, five are
high-resolution bands (I-bands); sixteen serve as moderate-resolution bands (M-bands);
and another is a unique panchromatic Day/Night band (DNB). In this study, we used
seven moderate-resolution reflectance bands (i.e., M3, M4, M5, M7, M8, M10, and M11)
and one thermal band (i.e., M16) at a 750 m resolution (Table 1) to get the spectral
signatures of smoke, cloud, bright surface, dust, and other surface types. These SDR
datasets were downloaded from the National Oceanic and Atmospheric Administra-
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tion (NOAA) Comprehensive Large Array-data Stewardship System (CLASS) (https:
//www.avl.class.noaa.gov/saa/products/).

Table 1. The S-NPP VIIRS bands (750 m) used in the SSDA.

VIIRS Band Center Wavelength (µm) Spectral Range (µm)

M3 0.488 0.478–0.498
M4 0.555 0.545–0.565
M5 0.672 0.662–0.682
M7 0.865 0.846–0.885
M8 1.240 1.230–1.250

M10 1.610 1.580–1.640
M11 2.250 2.225–2.275
M16 12.013 11.538–12.488

To enhance the contrast between smoke aerosols and non-smoke areas, we used the
corrected reflectance, rather than top-of-atmosphere (TOA) reflectance, for the blue band
(M3). The corrected reflectance is derived from the TOA reflectance by performing a
simple atmosphere Rayleigh scattering correction [38] without any adjustments for aerosol
scattering [39]. In addition, we calculated the spatial standard deviation of the blue band
corrected reflectance for a better separation of smoke from clouds. However, for bands of
longer wavelengths, we used TOA reflectance directly (without any corrections) due to the
negligible impacts from Rayleigh scattering on fine particle-dominated smoke aerosols at
longer wavelengths.

2.3. VIIRS True-Color Imagery

The VIIRS true-color imagery is composited from the corrected reflectance of bands I1
(red), M4 (green), and M3 (blue), which is freely available on the NASA Worldview website
(https://worldview.earthdata.nasa.gov/). Since the Rayleigh scattering effects have been
removed for corrected reflectance at these bands, smoke plume aerosols are more clearly
visible in the composited imagery from corrected reflectance than TOA reflectance due to
the more prominent Mie scattering contrast of smoke and non-smoke areas. It is worth
mentioning that the true-color imagery is developed specifically to address the needs of
the fire monitoring community to visualize smoke [39].

To visually identify smoke samples for the development of SSDA algorithm, we
downloaded the Suomi National Polar-orbiting Partnership (S-NPP) VIIRS 375 m true-color
imagery from NASA Worldview. Specifically, to select training samples of different cover
types, we downloaded true-color images containing large smoke extents from different
fire-prone regions and years (Table 2). Validation samples were selected from another
109 true-color image subsets that we downloaded across the fire-prone regions (Figure 1)
during August 2018 (see detail in Section 2.6.3). Corresponding VIIRS SDR data were also
downloaded for the same locations and times as the true-color imagery.

2.4. VIIRS Active Fire

The VIIRS 750 m daily level 2 active fire product (https://www.avl.class.noaa.gov/
saa/products/) provides fire detection time, fire location (longitude, latitude, sample,
and line), detection confidence, fire radiative power, view zenith angle, and the logical
criteria used for fire selection in each fire pixel [40]. The product also includes a fire mask
(FM) containing nine different pixel classes: not processed, bowtie detection, sun glint,
water, cloud, land, unclassified, and three fire-affected classes along with their detection
confidence [41]. We used the locations of actively burning fires to get the fire density
map [42]. We also used the water class from VIIRS fire mask to identify ocean areas because
sun glints over oceans and green waves along ocean coasts are easily confused with smoke.

https://www.avl.class.noaa.gov/saa/products/
https://www.avl.class.noaa.gov/saa/products/
https://worldview.earthdata.nasa.gov/
https://www.avl.class.noaa.gov/saa/products/
https://www.avl.class.noaa.gov/saa/products/
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Table 2. The acquisition locations and times of VIIRS imagery for selecting training samples.

Region ID Region of Interest Acquisition Date Acquisition
Time (UTC) Sample Types

a West North America 20180820 21:27 Smoke, cloud,
bright surface

b East North America 20190319 18:48 Smoke, cloud,
bright surface

c South America 20160912 17:08 Smoke, cloud,
bright surface

d Africa 20160917 12:10 Smoke, cloud,
bright surface

e Indonesia 20160828 06:43 Smoke, cloud
f Siberia 20170807 04:26 Smoke, cloud

g Australia 20180917 03:54 Smoke, bright
surface

Sahara 20180810 12:43 Dust
Sahara 20180818 13:36 Dust

Note: the region ID is corresponding to that in Figure 1. The Sahara region is not shown in Figure 1 because it is
not a fire-prone region and we selected only dust samples from this region. The bright surface is mainly bare soil.

2.5. VIIRS Enterprise Cloud Mask

VIIRS Enterprise Cloud Mask (CM) provides a 4-level cloud mask including cloudy,
probably cloudy, clear, and probably clear [43]. However, this product has a high false
detection rate (commission error), which means that smoke areas could be misclassified
as clouds [44]. Therefore, instead of using the final 4 level cloud mask, we used the
intermediate cloud mask tests and flags (including cloud shadow, oceanic glint, snow, and
cirrus), which are used to compute the final cloud mask available from the CM product,
as additional datasets to reduce noise in smoke detection [43]. The CM cloud shadow is
detected using a geometry-based cloud shadow detection procedure based on the satellite
viewing geometry, solar azimuth and zenith angles, cloud edge distribution, and cloud
altitude. The ocean glint mask is defined based upon the glint zenith angle which is also a
geometry-based algorithm using viewing and illuminating geometry information. Snow is
determined mainly based on a Normalized Difference Snow Index (NDSI) calculated from
the reflectance at 0.64 µm and 1.6 µm wavelengths. And thin cirrus cloud cover is detected
using reflectance at 1.38 µm wavelength, which resides in a strong water vapor absorption
band that could mask the surface under most conditions.

2.6. Datasets for Evaluating Smoke Detection
2.6.1. VIIRS Aerosol Products

The NOAA S-NPP Data Exploration (NDE) version of VIIRS level 2 aerosol products,
including aerosol optical depth (AOD) and aerosol detection products (ADP) (https://
www.avl.class.noaa.gov/saa/products/), were used to evaluate the SSDA smoke detection
results. The VIIRS AOD product provides aerosol optical depth at 0.55 µm, defined as
the vertically-integrated column total extinction at the wavelength of 0.55 µm [45]. This
product is derived based on the Second Simulation of the Satellite Signal in the Solar
Spectrum (6S) radiative transfer model [45].

The VIIRS ADP product identifies VIIRS pixels as clear, smoke, or dust categories
during daytime [28]. Two algorithms, including deep-blue based algorithm and IR-visible
based algorithm, have been developed for operational smoke detection in the ADP prod-
uct [28]. Specifically, the deep blue algorithm detects smoke by using the absorbing AI
and a dust smoke discrimination index (DSDI) derived from three TOA reflectance bands:
0.41, 0.44, and 2.2 µm. AI generally increases as absorbing aerosol loadings (including
smoke and dust) increase. The DSDI value of dust is typically greater than that of smoke
since the 2.2 µm band is sensitive to the existence of dust but not smoke. Therefore, the
combined use of absorption AI and DSDI can help distinguish smoke from dust and also

https://www.avl.class.noaa.gov/saa/products/
https://www.avl.class.noaa.gov/saa/products/
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clear land. Since the deep blue algorithm does not work well in some surface reflectance
combinations, smoke detections from the IR-visible based algorithm are also provided in
the ADP product.

2.6.2. TROPOMI Smoke

The TROPOMI smoke was obtained by combining the positive TROPOMI ultraviolet
aerosol index (UVAI) value with the VIIRS DSDI value of smoke based on the deep-blue
algorithm that is applied to the VIIRS ADP (Section 2.6.1). The TROPOMI UVAI was used
because the TROPOMI sensor provides the UVAI calculated from reflectance at the 0.34
and 0.38 µm wavelengths at the finest spatial resolution (3.5 × 7 km2) to date [46]. As
one of the evaluation datasets, the TROPOMI level 2 UVAI product was downloaded over
areas corresponding to the 109 true-color August 2018 image subsets from the Sentinel 5P
Pre-Operations Data Hub (https://s5phub.copernicus.eu/dhus/#/home). Then, the UVAI
was resized using bilinear interpolation to the same spatial resolution as the DSDI data
which were available from the VIIRS ADP product.

2.6.3. Manually-Delineated Smoke Plumes

We also manually delineated smoke plumes, based on VIIRS true-color images, to
create smoke reference data for validation of the SSDA smoke detection results. To ob-
tain high-quality smoke reference data, image subsets, instead of whole VIIRS granules,
were used to select smoke plumes with relatively clear boundaries that could be clearly
distinguished from clouds, bright surfaces, and dust. This subset process also confined our
attention to small areas containing smoke plumes (subset areas) without considering large
areas devoid of smoke (outside of the image subsets) because smoke area takes up only an
extremely small portion of global area. The month of August was selected as the validation
period because fire activity generally peaks in August across most of the selected fire-prone
regions [47,48], which provides more opportunities than other periods to choose smoke
samples for evaluating the new SSDA algorithm. A total of 109 qualified image subsets,
distributed uniformly over the fire-prone regions (Figure 2), were selected during August
2018. The delineated smoke plume extents were assigned as the smoke class while other
areas inside the image subsets were assigned as the non-smoke class. Since the spatial
pattern of the smoke plume shows a discontinuity in some areas due to interference from
clouds or bare lands inside the plume boundary, we conservatively refined the smoke
reference data by grouping these cloud or bare land pixels into the non-smoke class. For
quantitative evaluation, we did not select validation samples from southeastern North
America (Figure 1b) because August was not part of the typical fire season (i.e., November–
April) in this region and we were not able to select enough samples. Instead, we selected
two evaluation samples from this region in March, accompanied by another two big fire
events in Australia and California, to qualitatively evaluate the performance of the new
algorithm (see Section 4.1).
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3. Methodology

We selected training and validation smoke samples over fire-prone regions for the
development of the new SSDA algorithm and tested the algorithm at a global scale. The
training samples were selected visually and manually based on true-color images listed
in Table 2, which had 47,363, 8871, 44,933, and 84,184 pixels for clouds, bare soil, smoke,
and dust, respectively. The spectral and spatial information of the training samples were
then applied to design multi-criteria for the SSDA. By combining the multi-criteria with
additional datasets from VIIRS active fire and cloud mask products, we firstly eliminated
non-smoke classes and then determined the smoke class. The SSDA smoke was evaluated
both qualitatively and quantitatively using VIIRS true-color image, VIIRS ADP, TROPOMI
smoke, previously published smoke results, and manually-delineated smoke (see detail in
Section 2.6).

3.1. Design of Detection Criteria

The multiple criteria for the SSDA development were designed based on the spectral
and spatial features of training samples. Firstly, we identified various cover types based
on their spectral reflectance characteristics. Because the blue reflectance (M3) of clouds,
bare soil, dust, and smoke aerosols are all greater than 0.1 (Figure 3), we defined all other
cover types with a low reflectance in the blue band as dark surfaces that were eliminated
first. Among the classes in Figure 3, clouds have the unique spectral characteristic of lower
M10 reflectance than the M11 band (Figure 3a). This signature may be due to the high
microscopic liquid water content in clouds that is not present in bright surface, smoke,
or dust samples. In addition, reflectance values of the first four bands (M3–M7) in cloud
spectrums are much higher than other cover types (Figure 3a). For both bare soil and
dust classes, their common spectral signature is the significantly increasing reflectance
values, ramping with increasing wavelengths of the first six bands (M3–M10) (Figure 3b).
This feature is relatively stable for many bright soil types and consistent with previous
reports [49] (Figure 3b). We grouped bare soil and dust classes into the bright surface
category. For smoke, the unique spectral feature is the slightly higher reflectance of blue
and green bands than the red band (Figure 3c). This phenomenon is mainly caused by Mie
scattering dominating among the smoke aerosols. Mie scattering reaches peak efficiency
for particles with diameters similar to wavelengths of the incident light and it is much
stronger than Rayleigh scattering [50]. Since reported smoke particle sizes [33] are much
closer to the wavelengths at shorter optical bands, Mie scattering leads to relatively high
reflectance values in green and blue bands for the smoke spectrum. This feature could also
help distinguish smoke aerosols from other aerosols with much coarser particle sizes, such
as dust aerosols.
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Second, the cover types were further separated based on a combination of the re-
flectance ratio M11/M3 and the brightness temperature (BT) at the M16 band (Figure 4).
Theoretically, the M11/M3 ratio should be low for clouds and smoke plumes because of
their relatively high reflectance at M3 and low reflectance at M11. The low reflectance at
M11 for these two cover types is caused by less Mie and selective scattering by particles
if the particle size is far smaller than the wavelength at longer bands, such as M11 at
2.25 µm [27]. Further, the brightness temperature of smoke is significantly higher than
clouds and marginally lower than bare soil. Therefore, besides using spectral reflectance
characteristics, smoke was also detected based on M11/M3 ratio and brightness tempera-
ture values: clouds were distinguished using very low brightness temperatures, and bright
bare soil surfaces were separated using significantly higher M11/M3 ratios.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 23 
 

 

values in green and blue bands for the smoke spectrum. This feature could also help dis-
tinguish smoke aerosols from other aerosols with much coarser particle sizes, such as dust 
aerosols. 

 
Figure 3. The spectral signatures of (a) cloud, (b) bare soil, (c) smoke, and (d) dust derived from training samples. The 
horizontal axis labels of M3, M4, M5, M7, M8, M10, and M11 represent VIIRS moderate-resolution bands (Mband) centered 
at 0.488 µm (blue band), 0.555 µm (green band), 0.672 µm (red band), 0.865 µm, 1.24 µm, 1.61 µm, 2.25 µm (near-infrared 
bands) (Table 1), respectively. N is the pixel number of training samples from each cover type. 

Second, the cover types were further separated based on a combination of the reflec-
tance ratio M11/M3 and the brightness temperature (BT) at the M16 band (Figure 4). The-
oretically, the M11/M3 ratio should be low for clouds and smoke plumes because of their 
relatively high reflectance at M3 and low reflectance at M11. The low reflectance at M11 
for these two cover types is caused by less Mie and selective scattering by particles if the 
particle size is far smaller than the wavelength at longer bands, such as M11 at 2.25 µm 
[27]. Further, the brightness temperature of smoke is significantly higher than clouds and 
marginally lower than bare soil. Therefore, besides using spectral reflectance characteris-
tics, smoke was also detected based on M11/M3 ratio and brightness temperature values: 
clouds were distinguished using very low brightness temperatures, and bright bare soil 
surfaces were separated using significantly higher M11/M3 ratios. 

Finally, the normalized difference vegetation index (NDVI) and spatial standard de-
viation of blue band reflectance (StdM03) were also used as additional criteria in the de-
tection procedure. The NDVI helps separate smoke from dense vegetation due to the 
lower NDVI value of smoke [51,52]. The spatial standard deviation helps to further dis-
tinguish smoke from clouds because clouds always have a significantly high spatial stand-
ard deviation [28,53]. 

 
Figure 4. The density distributions of (a) M11/M3 ratio and (b) brightness temperature at the M16 
band for cover types of bright bare soil, cloud, and smoke. The training samples are the same as 
those of Figure 3. 
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Finally, the normalized difference vegetation index (NDVI) and spatial standard
deviation of blue band reflectance (StdM03) were also used as additional criteria in the
detection procedure. The NDVI helps separate smoke from dense vegetation due to
the lower NDVI value of smoke [51,52]. The spatial standard deviation helps to further
distinguish smoke from clouds because clouds always have a significantly high spatial
standard deviation [28,53].

3.2. Smoke Detection Procedure

The procedure for smoke detection followed the steps listed in Figure 5. Thresholds
were initially derived based on both literature [15,51,54–56] and spectral and spatial features
of training samples, as described in Section 3.1. We used relatively strict thresholds for
dark surface, cloud, and bright surface detection, but relatively loose thresholds for smoke
to detect as many potential smoke plumes as possible. The optimal thresholds were finally
determined when we got the best overall accuracy through multiple sensitivity analyses.

Step 1: Dark surface detection. The cover types with low blue reflectance values
(M3 < 0.09) were classified as dark surfaces at the beginning since smoke, clouds, and
bright surfaces all have relatively high blue reflectance (Figure 3). We also categorized
vegetation, water, green coastal waves, and oceanic sun glint as dark surfaces (Figure
5). Specifically, pixels with NDVI greater than 0.5 and an M11/M3 ratio less than 0.05
were grouped into vegetation and water classes, respectively. Because green waves along
coasts and sun glints over the ocean are easily confused with smoke, the green waves were
separated using the high reflectance at the green band (FM = water and M4/M5 > 1.5).
Oceanic sun glint was initially designated based on the oceanic glint from VIIRS CM and
then further refined based on its spectral characteristics (FM = water and M11/M3 > 0.5
and BT > 290).
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Step 2: Cloud detection. We did not use the VIIRS cloud mask (CM) product directly
here because of its very high commission error. Similarly, we also did not use the cloud
class from the VIIRS fire mask due to its relatively high omission error for thin clouds and
cloud edges. Alternatively, we used two intermediate datasets of the VIIRS CM, cloud
shadow and cirrus, as the cloud class for this study. Remaining cloud pixels were detected
based on characteristically low reflectance at M10 compared with other bands, very high
reflectance at short bands (M3–M7), a combination of low M11/M3 ratio, low brightness
temperature, and high spatial standard deviation. Further, the cloud detection criteria
developed in a contextual fire detection algorithm [54,55] was also used in this study, but
have been modified slightly by adding a brightness temperature threshold.

Step 3: Bright surface detection. We identified bright surfaces (bare soil and dust)
based on near-constant increasing spectral reflectance of the first several bands (Figure 3b),
as well as the combination of high brightness temperature and high M11/M3 ratio. For
the bright surfaces of white sands and badlands, such as in southwestern North America,
spectrums may be slightly different with bright bare soils. Therefore, we classified these
areas as bright surfaces based on their own specific spectral features. Finally, we also
grouped the snow class from VIIRS CM into the bright surface class.
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Step 4: Smoke detection. Smoke was detected at the end to reduce interference
from other cover types using its slightly higher or similar reflectance of blue or green
bands relative to the red band, as well as the combination of relatively low M11/M3 ratio,
relatively high brightness temperature, and low spatial standard deviation. Because of the
complexity of smoke, with different aerosol size distributions, we also slightly adjusted the
criteria of the smoke detection step to identify any potential smoke plumes using a slightly
looser threshold for one criterion but stricter thresholds for the other criteria. In addition,
we grouped fire hotspots from VIIRS fire mask into the smoke class.

Finally, the few pixels that failed to match any criteria were kept as unclassified. These
mainly consisted of pixels with overlapping M11/M3 ratios and brightness temperatures
in Figure 4 and without a matched spectral signature in Figure 3.

3.3. Accuracy Assessment

Smoke detection performance of the SSDA was evaluated both qualitatively and
quantitatively. First, smoke detection results were evaluated qualitatively using VIIRS
true-color images over two recent big fire events in Australia and California. Australia’s
2019–2020 bushfire event lasted several months, from October 2019 to February 2020. It
resulted in more than six million hectares of land burned, several people died, and billions
of animals exterminated [57]. The 2020 fire season in the western United States of America
(USA), mainly California, was the most active of the last few years. From mid-August to
October, intense fires in the western USA produced large amounts of smoke aerosols that
drifted north and east. At present (mid-October 2020), the fires are still burning. In addition,
the SSDA smoke detections were also visually compared with other smoke-related datasets,
including aerosol detection product (ADP), TROPOMI smoke, and two published smoke
results [15,58] for several other small fire events.

Second, the SSDA smoke detection was quantitatively evaluated over the selected 109
image subsets from August 2018, as described in Section 2.6.3. The evaluations included:
(1) AOD values of smoke and non-smoke pixels from the SSDA were compared with those
from VIIRS ADP and TROPOMI smoke; (2) the SSDA smoke detection was statistically
assessed using the manually delineated smoke reference data, VIIRS ADP, and TROPOMI
smoke based on several indexes including smoke percentage, overall accuracy, commission
error, and omission error. The smoke percentage is the ratio of smoke pixels to the total
pixels within each subset image Equations (1) and (2). The overall accuracy is the probability
that a smoke or non-smoke pixel is correctly classified Equation (3). The commission error
of smoke refers to the fraction of non-smoke pixels that are classified as the smoke class
Equation (4). In contrast, the omission error of smoke represents the fraction of smoke
pixels that are misclassified as the non-smoke class Equation (5). The commission error and
omission error are the complements of the producer’s accuracy and the user’s accuracy,
respectively. These indexes were calculated as follows:

Re fsp = T1/(T1 + T2) (1)

Classsp = (S1 + S2)/(T1 + T2) (2)

OA = (T1 + S2)/(T1 + T2) (3)

CE = S2/(S1 + S2) (4)

OE = N1/(S1 + N1) (5)

where Re fsp is the smoke percentage reference; Classsp is the smoke percentage of smoke
detection from different products; OA is overall accuracy; CE is commission error; OE is
omission error; T1 and T2 are the total number of pixels inside and outside of the delineated
smoke polygons, separately; S1 and S2 are the number of smoke pixels inside and outside
of the referenced smoke plume, respectively; and N1 is the number of non-smoke pixels
inside the referenced smoke plume.
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Finally, we tested the global application of the SSDA algorithm by calculating one-
month smoke occurrence frequency based on daily smoke detection during August 2018
and analyzed its spatial distribution pattern by comparing it with a fire density map
derived from VIIRS 750 m active fire observations collected in August 2018.

4. Results
4.1. Qualitative Evaluation of the SSDA Smoke Detections
4.1.1. Qualitative Evaluation Using True-Color Images

We evaluated our SSDA performance qualitatively by comparing the smoke detection
patterns with the corresponding true-color imagery over two big fire events in Australia
and California during 2019 and 2020. The early stage of these two fire events burned in
small areas with thin plumes (Figure 6a,c). Figure 6a1,c1 illustrate that the SSDA detected
the majority pixels within these fire plumes successfully, even for one extremely small
smoke plume in the south of Figure 6a. Additionally, the spatial extents of these smoke
plumes could be separated well from other surface types, except for the extremely thin
smoke pixels at plume edges that were too thin to be detected.
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Figure 6b,d shows the late stage of the Australia and California fire events, respectively.
Bushfires dominated in Australia. In Figure 6b1, the SSDA smoke detections match quite
well with the spatial pattern of smoke plumes on the true-color images over land, even for
the relatively thin plumes in the north of Figure 6b. Some smoke aerosols over oceans were
not detected successfully by SSDA due to interferences from oceanic glints, which were
grouped into dark surfaces and removed prior to evaluation for the presence of smoke
(Figure 5 step1). Californian smoke plumes have primarily been from large forest fires that
spread for several thousand kilometers, with a high density in the center and a low density
toward the edges. Despite the heterogeneous spatial pattern, Figure 6d1 shows that the
SSDA still detected the overall pattern of Californian fire smoke over both land and ocean
very well with a clear separation from clouds and bright surfaces, although a very few thin
smoke pixels at smoke boundaries were missed (Figure 6d).

Overall, evaluation of SSDA performance showed that spatial patterns of smoke
plumes matched quite well with true-color images for both low-density fire plumes in the
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early stage and high-density fire plumes in later stages of fire events, even under some
unfavorable heterogeneous conditions.

4.1.2. Qualitative Evaluation Using VIIRS ADP and TROPOMI Smoke

Figure 7 shows the spatial comparison of the SSDA smoke detection results with the
VIIRS ADP product and TROPOMI smoke over southeastern North America. Visually,
the SSDA detection map matches well with the true-color image, but differs largely from
the VIIRS ADP product and TROPOMI smoke, for both the location and amount of fire
smoke plumes (Figure 7). The VIIRS ADP product misclassified considerable amounts of
snow/ice and cloud pixels as smoke in the north of the image, but it also missed many
small smoke plumes and smoke pixels at plume edges (Figure 7c). TROPOMI smoke
also greatly underestimated smoke cover (Figure 7d). The differences are more apparent
in the three zoom-in images (Figure 7a’–c’). Compared with corresponding true-color
imagery, the SSDA detected smoke plume extent well, although stripes resulted from VIIRS
aggregation process at large view zenith angles [59] were unclassified because filling stripe
was not a focus in this study. However, both the VIIRS ADP product and TROPOMI smoke
missed a lot of smoke pixels at plume boundaries since the absorption aerosol index is not
sensitive to thin smoke, composed of weakly absorbing aerosols, especially for absorption
aerosols near the Earth’s surface (1.5 km or less) [60].
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smoke over the southeastern North America (−99.15◦ E–−84.95◦ E and 30.45◦ N–44.75◦ N) on 22 March 2019. Insets (a’–d’)
are zoom-in images of the blue square area in (a–d), respectively.

4.1.3. Qualitative Evaluation Using Published Results

Through comparison with published smoke detection results, we further evaluated
the performance of the SSDA. Figure 8 shows the comparison of the SSDA smoke detection
results with two smoke datasets derived from Aqua MODIS TOA reflectance based on
existing algorithms [15,58] over southeastern North America. These datasets were selected
because both papers [15,58] focused on smoke detection over southeastern North America
and were supposed to perform better than the results from other regional smoke detections.
A comparison with smoke on the MODIS true-color image (Figure 8c) shows substantially
higher omission errors for smoke detection results from Wang et al. (2007) (Figure 8d) and
correspondingly higher commission error from Xie et al. (2007) (Figure 8e). In contrast,
the smoke detected from the SSDA (Figure 8b) matches well with smoke plume extents
on the VIIRS true-color image (Figure 8a). The number of smoke pixels detected by the
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SSDA is about five times (4052/797) of that from Wang et al. (2007) but only about one
fifth (4052/21808) of that from Xie et al. (2007). Comparison with smoke plumes visible in
true color imagery shows that the SSDA algorithm’s smoke detections better represent the
smoke conditions than methods used in the two references.
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Figure 8. Comparison of (b) the SSDA smoke with the smoke detections using algorithms developed by (d) Wang et al.
(2007) and (e) Xie et al. (2007) from MODIS TOA reflectance over the southeastern North America (−93.96◦ E–91.31◦ E
and 34.24◦ N–36.93◦ N) on 19 March 2019. (a) is the true-color image obtained from S-NPP VIIRS overpassing at 18:50
(UTC) while (c) is the true-color image obtained from Aqua MODIS overpassing at 18:44 (UTC). N is the number of detected
smoke pixels of each algorithm.

4.2. Quantitative Evaluation of the SSDA Smoke Detections
4.2.1. Comparison of AOD Values between Smoke and Non-smoke Pixels

Figure 9 shows the median AOD values at 0.55 µm in smoke and non-smoke pixels
from the SSDA detection, TROPOMI smoke, and VIIRS ADP. The SSDA detection indicates
higher AOD values in smoke pixels than in non-smoke pixels (Figure 9a). In the regions
of North America (a) and Siberia (f) where large and dense smoke plumes were mainly
emitted from forest fires during August, the AOD values were 1.42 (a) and 1.35 (f) in
SSDA detected smoke pixels while they were only 0.24 (a) and 0.13 (f) in the background
non-smoke pixels. In Indonesia (e) where the smoke plumes were generally associated
with smoldering forest or peatland fires and tended to produce large amounts of coarse
smoke particulate matter [19], the SSDA smoke AOD value (1.73) was also much larger
than the non-smoke AOD value (0.33). In contrast, in the regions of South America (c),
Africa (d), and Australia (g) where thin smoke plumes were mainly released from small
flaming savanna or grassland fires during August, the difference of AOD values (c: 0.55,
d: 0.50, and g: 0.52) between smoke and non-smoke pixels were much smaller.
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Relative to TROPOMI smoke, SSDA smoke detections generally produce both smaller 

Figure 9. Comparison of AOD median values between smoke and non-smoke pixels of (a) the SSDA result with (b)
TROPOMI smoke and (c) VIIRS aerosol detection product (ADP). The samples are from 109 image subsets at the global scale
(see Section 2.6.3). The numbers above the boxplot are AOD median values in smoke pixels (orange), non-smoke pixels
(green), and their differences (blue). The letters below the boxplot are consistent with those in Figure 1, namely, North
America (a), South America (c), Africa (d), Indonesia (e), Siberia (f), and Australia (g), respectively. Region b in eastern
South America is not shown because of the limited number of fire events during August.

For the TROPOMI smoke detections, the AOD differences were also highest in regions
of North America (a) and Siberia (f) which were similar to SSDA smoke detection results.
However, in regions of South America (c) and Indonesia (e), the AOD difference values
from TROPOMI smoke were negative with a lower AOD value in smoke than non-smoke
pixel. The AOD in smoke pixel were zero in these two regions (c & e) because no smoke
was detected in some evaluation polygons due to the high omission error of TROPOMI
smoke in these two regions (Figure 9b). As for the VIIRS ADP product in Figure 9c, the
AOD difference between smoke and non-smoke pixels was much larger than that of SSDA
detections, which implies that VIIRS ADP primarily detects dense smoke at the center of
smoke plumes with high AOD values, therefore missing the majority of pixels at plume
edges or from thin plumes with low AOD values.

4.2.2. Validation of SSDA Smoke Detections Using Manually-Delineated Smoke
Reference Data

The SSDA smoke detections were validated using manually delineated smoke ref-
erence data based on true-color images, and further compared with the results of other
smoke-related datasets, namely TROPOMI smoke and VIIRS ADP (Figure 10). The median
smoke percentages of the SSDA smoke detections are much closer to the reference data
than that of TROPOMI smoke and VIIRS ADP in all six examined regions (Figure 10a).
Overall accuracy of SSDA smoke detection is the highest among these three smoke detec-
tion datasets in all regions with the exception of Indonesia (Figure 10b). Commission errors
of SSDA smoke detections are 8%, 3%, 2%, 29%, 4%, and 7% in North America, South
America, Africa, Indonesia, Siberia, and Australia, respectively (Figure 10b). Commission
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errors are largest in Indonesia where clouds occur frequently and always mix with smoke
plumes. Correspondingly, the omission errors of smoke pixels are 17%, 51%, 48%, 35%, 24%,
and 42% in the six regions, respectively (Figure 10c), which are smaller in North America
and Siberia that had large and dense smoke plumes than in regions (South America, Africa,
Indonesia, and Australia) characterized by small and thin smoke plumes. Relative to
TROPOMI smoke, SSDA smoke detections generally produce both smaller commission
errors and omission errors. Moreover, validation shows that the SSDA provides much
smaller omission errors and similar, though slightly greater, commission errors relative to
VIIRS ADP smoke detections in all the six regions (Figure 10b,c).
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4.3. Global Smoke Map

Figure 11 shows the frequency of global smoke occurrences accumulated from daily
SSDA smoke detections during August 2018. Smoke occurred most frequently in the
western North America, southern Africa, and northeastern Pakistan, with smoke cover of
as many as 20 days during August 2018. The frequency of smoke occurrence was between
5 days and 15 days over a large part of South Africa, India, Indonesia, China, and Siberia.
It was very low in other regions where fires were not prevalent, or the fire season was not
in August. The frequency of smoke occurrence matched well spatially with the VIIRS fire
density in August 2018, particularly in the fire-prone regions of North America, northern
South America, Africa, Indonesia, and Siberia, although spatial patterns of smoke were
also influenced by wind directions, smoke aerosol emission coefficients [19,20], and other
parameters. In the regions where forest fires were dominated, such as Siberia, fuels were
very large and fire smoke emissions were correspondingly large. This means each fire
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hotspot could release a large amount of smoke, result in large spatial extent of smoke
plumes, and cause high smoke frequency in surround areas. However, the frequency of
smoke occurrence seemed to be underestimated in fire-prone regions of South America
and Australia when compared to the fire detection density map and true-color imagery
on NASA worldview (https://worldview.earthdata.nasa.gov/). This phenomenon was
consistent with the results (Section 4.2.2) that omission errors were highest in these two
regions (Figure 10). In eastern Amazon (in South America), fire smoke detections are
strongly obstructed by cloud contaminations, which results in the discrepancy between
smoke occurrence frequency and fire density. In contrast, frequency seemed overestimated
in regions of Pakistan and northern India, as the spatial pattern of fire detection density
did not show any signal for the source of smoke in these two regions. This discrepancy
could be attributed to fires that were not fully detected, such as crop fires in India [61], or
heavy particulate pollution over these regions [62]. For the smoke detections over oceans,
the frequency was generally low because of the disperse characteristic of smoke after being
transported far from their source fires and the high omission error of smoke over oceans
caused by oceanic glint impacts on smoke detection from the SSDA. The discontinuousness
of smoke from inland fire source regions to the deep ocean is mainly caused by cloud and
sun glint interference in the smoky days and the occurrence of higher smoke frequency in
the ocean is likely associated with the influence of wind conditions.
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5. Discussion

This study develops a new algorithm (SSDA) for automated daily detection of fire
smoke plumes using 750 m VIIRS data. It provides a complementary biomass burning
dataset for fire-related products, including active fire [41,63], burned area [64,65], biomass

https://worldview.earthdata.nasa.gov/


Remote Sens. 2021, 13, 196 17 of 22

burning emissions [48,66], and aerosol data [67]. This newly developed algorithm has
several advantages:

1. The theoretical basis is the strong Mie scattering at blue and green bands caused by
smoke aerosols. These two bands are more commonly available on satellite sensors
than ultraviolet bands.

2. The corrected reflectance, instead of TOA reflectance, of the blue band is used, which
enhances potential contrast between smoke and non-smoke areas because it reduces
considerable impacts from Rayleigh scattering but keeps important information from
aerosol scattering for the wavelength spectrum corresponding to smoke aerosol
particulate sizes.

3. Using multiple criteria (spectral and spatial) in a stepwise way (4 steps) in the SSDA
reduces potential commission errors and large uncertainties (see following para-
graphs) as much as possible, since no unique features allow separation of smoke from
other surface types.

4. The detection of thin smoke released from small fires is greatly improved, which
could help people monitor fire development at early stages, and then take relevant
actions to prevent major fire events from developing.

5. Detection of dense smoke emitted from large fires is also greatly enhanced with lower
commission and omission errors in North America and Siberia, which could improve
the accuracy of biomass burning emissions estimates by combining it with AOD or
carbon monoxide observations using chemistry-transport models.

6. The method of smoke detection can be applied efficiently at a global scale.

Potential uncertainties remain for SSDA smoke detection under such unfavorable
conditions as extremely thin smoke, smoke-cloud mixtures, smoke-haze mixtures, or
coarse particulate dominated smoke. Identification of extremely thin (semitransparent)
smoke is difficult as the spectral signal becomes a variable mixture from both the smoke
and the underlying Earth surface background. Semitransparent smoke plumes from
diffuse, small grassland and savanna fires and around the edges of denser smoke plumes
are consistently contaminated by background spectral signals, especially bright surfaces.
Smoke is, therefore, likely to be misclassified as the bright surface if the optical spectral
contribution from the bright surface is higher in the pixel. This is the main factor behind
high omission errors for smoke detections of small plumes, as shown in southern South
America and Australia (Figure 6a1,c1, and Figure 10d). In addition, detection of extremely
thin smoke from crop fires is also challenging because the extent of such smoke is generally
less than one VIIRS pixel size (750 × 750 m2 at nadir) and the returned optical signal is
from a pixel mixed smokes and other cover types. Detection of smoke in pixels mixed with
clouds is another challenge, which is a common phenomenon in tropical regions. Although
smoke from fires passing above clouds is detectable, it is hard to separate them when
plumes are below or mixed with clouds that contribute significantly to the spectral feature.
This is a major reason for large omission errors in the tropics (Figure 10d). Moreover,
differentiating haze, such as in Pakistan, northern India, and eastern China, from smoke
(Figure 11) is also challenging because they both contain high concentrations of fine-size
particles, which may lead to similar scattering effects in VIIRS blue and green bands [27].
Finally, for smoke with pretty coarse particulates, such as part of the smoke released from
Indonesia smoldering fires, the strongest Mie scattering may occur at red or longer bands,
rather than blue or green band, which is likely to cause omission errors of smoke detection.

The SSDA accuracy assessment (Figure 10) may have also been affected through un-
certainties induced by evaluation datasets. First, the manually-delineating smoke reference
data may propagate some uncertainties because boundaries of some fire smoke plumes
are not easily identifiable, even visually, from true-color images. Similarly, mixtures or
misidentification of smoke and cirrocumulus clouds in selected reference smoke samples
could have occurred, predominately in tropical regions. Although subset regions, instead
of whole granules are used to produce smoke reference data (Figure 2), the accuracy as-
sessment could potentially be affected by the difference in sample numbers for smoke and
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non-smoke classes, especially if the number of smoke pixels is much smaller than that of
the non-smoke pixels. Second, TROPOMI smoke is not a mature operational product but
produced by ourselves through combing positive UVAI values with smoke DSDI. The UVAI
value may bias systematically due to calibration issues [68]. Additionally, we did not use
quality control for TROPOMI UVAI to keep more values match with SSDA results. Third,
global fire density is not an ideal dataset to evaluate SSDA smoke occurrence frequency
because these two variables are impacted by different factors. Specifically, fire density is
impacted by satellite detectability, where small and weak fires, understory fires, as well as
cloud/smoke contaminated fires are not detectable, whereas, smoke frequency is influenced
by smoke emission coefficients, wind conditions, and cloud contaminations. However, fire
density is the most relevant variable associated with fire smoke occurrences. Moreover, it
is near-impossible to evaluate smoke plumes under all conditions due to the challenges
in obtaining high-quality smoke reference data. For example, smoke plumes over the
ocean were not quantitatively evaluated due to the challenge of obtaining good reference
data over ocean area pixels. However, SSDA smoke detections over water are visually
comparable with true-color images (Figure 6h). Finally, the lack of a high-spatial-resolution
smoke evaluation dataset is an additional challenge that compounds the complexity of
smoke detection evaluation.

Although many factors could lead to uncertainties in smoke detection, the improve-
ments of SSDA detection have various implications. First, SSDA smoke detections could
improve AOD retrieval accuracy and efficiency by using the SSDA detected smoke ex-
tent directly over the smoke area instead of looking for the ”optimal” aerosol model by
looping over five candidate aerosol models [69]. The SSDA smoke detections could also
increase effective AOD pixel numbers because currently smoke pixels, close to or mixed
with clouds and/or thick smoke, often have no AOD retrieval due to being misclassified
as clouds [70]. Second, the SSDA smoke detection information could improve estimates
of biomass burning emissions, especially over regions dominated by small and cool fires.
Traditionally, biomass burning emissions are calculated based on fire detections, such as
fire radiative power [71–73]. However, small and cool fires are easily missed by sensors
due to the weak radiation energy or interceptions from the smoke plume, forest canopy,
and clouds. In contrast, smoke plumes from such fires tend to stay near the ground in
high concentrations [15,74] that are observable by existing sensors. Therefore, combining
the smoke plume extent and corresponding AOD retrieval may provide a novel way to
estimate smoke aerosol emissions from biomass burning [19,20,26].

6. Conclusions

Accurate smoke detection maps would undoubtedly be quite useful in scientific
research related to climate change simulation, weather prediction, and human environment
monitoring. In this study, we propose a new stepwise smoke detection algorithm, called
SSDA, based on the strong Mie scattering of smoke aerosols at blue and green bands in the
VIIRS sensor data record. Visually compared with smoke-related data, including VIIRS
true-color images, TROPOMI smoke, VIIRS ADP, and previously published results, the
SSDA smoke detection shows more robust results in separating smoke from clouds and
bright surfaces and a stronger capability of detecting smoke plumes released from both
large and small fires. Using manually delineated smoke reference data as a benchmark, we
also quantitatively validated SSDA smoke detection results for fire-prone regions globally.
Statistical analysis shows that the commission errors of the SSDA smoke detections are
8%, 3%, 2%, 29%, 4%, and 7%, whereas the omission errors are 17%, 51%, 48%, 35%,
24%, and 42% in North America, South America, Africa, Indonesia, Siberia, and Australia,
respectively. Commission errors of SSDA are much lower than TROPOMI smoke and
comparable with ADP product, while omission errors of SSDA are significantly lower
than both these two datasets. Commission errors were most prevalent under conditions
of haze pollution, whereas omission errors generally corresponded to areas of extremely
thin smoke plumes, especially when above bright surfaces or mixed with clouds. Further,
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comparison with smoke reference data indicates that the SSDA smoke detection approach
works very well over regions associated with dense smoke plumes but also improves
smoke plume detection over regions characterized by thin smoke plumes. Finally, the
SSDA algorithm shows powerful capabilities for calculating smoke occurrence across
the globe with comparable spatial patterns to fire density derived from VIIRS active fire
product. More importantly, this new smoke detection algorithm provides an improved tool
for fire monitoring communities for global smoke-related applications. Although the SSDA
was developed using VIIRS data aboard S-NPP, this algorithm can be readily adapted to
other sensors due to the common availability of blue or green channels as compared to
smoke detection methods that are reliant on ultraviolet channels.
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